Cascaded Optical Field Enhancement in Composite Plasmonic Nanostructures
نویسندگان
چکیده
منابع مشابه
Cascaded optical field enhancement in composite plasmonic nanostructures.
We present composite plasmonic nanostructures designed to achieve cascaded enhancement of electromagnetic fields at optical frequencies. Our structures were made with the help of electron-beam lithography and comprise a set of metallic nanodisks placed one above another. The optical properties of reproducible arrays of these structures were studied by using scanning confocal Raman spectroscopy....
متن کاملImaging the optical near field in plasmonic nanostructures.
Over the past five years, new developments in the field of plasmonics have emerged with the goal of finely tuning a variety of metallic nanostructures to enable a desired function. The use of plasmonics in spectroscopy is of course of great interest, due to large local enhancements in the optical near field confined in the vicinity of a metal nanostructure. For a given metal, such enhancements ...
متن کاملOptical interactions in plasmonic nanostructures
We present a review of plasmonic nanostructures in which the constituent materials are coupled together by optical interactions. The review first provides a comprehensive coverage of theoretical framework where the optical interactions are described by the multiple scattering among the nanostructures. We then discuss the two limiting cases of weak and strong interactions. The weak interaction r...
متن کاملOptical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods
An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...
متن کاملOptical rectification and field enhancement in a plasmonic nanogap.
Metal nanostructures act as powerful optical antennas because collective modes of the electron fluid in the metal are excited when light strikes the surface of the nanostructure. These excitations, known as plasmons, can have evanescent electromagnetic fields that are orders of magnitude larger than the incident electromagnetic field. The largest field enhancements often occur in nanogaps betwe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2010
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.105.246806